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4. Summary
1. Motivation Example

For the linear system as follows
X"=A{t)x+h(t), x(t,)=X,,
we have an algebraic structure of solution given by
X(t) = d)D(t,)Xx, + q)(t)J'; O (s)h(s)ds,

where ®(t) is a fundamental matrix solution. However, this result doesn’t tell us

how to find ®(t). In fact, it has no way to get an explicit solution in general. See the
example of Ricatti equation
X =t*+ %%,

!

which has no explicit solution. Taking a transformation: x = _u_, we have

e

This is a type of form: x" = A(t)x. We conclude that we are not able to solve the above

particular linear time-varying system. Otherwise, we can solve the Ricatti equation. It

shows that we can’t expect to solve ®(t) for x'=A(t)x in general without
restriction. There is no way to find a systematic method to solve ®(t).

If At)=A, we are able to find its fundamental matrix solution ®(t)=e",

which is an exponential of the matrix A.

The following questions need to solve:

A

e Definition of e” and Basic Properties;
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e Role of e”' and its Computation;

2. Basic Properties of e”

Definition 7.1 For areal nxn matrix A, define

2 m 00 k
eA:|n+A+A_+...+A R :ZA_’
21 m! g

where A°=1 .
Remark 7.1 Since |1, ||=1, |[|A™| < || A||", the series

l+||A||+||A||2 +---+”A”m 4ozl
2! m!

is convergent. Therefore, e” is well defined.

Remark 7.2 Unlike the exponential of scalar e?, e* will be much complicated.

Proposition 7.1 Let A, B, P beall nxn matrices. Then
1) If AB=BA,then e"® =e”e®.
2) Forany AeL(K"), e” isinvertibleand (e”) '=e*.

3) If P isinvertible, then e” ** =P Te*P.

Proof. 1) Since AB = BA, the binomial theorem holds for matrix, that is,

K k! -
(A+B)" => - B!
JZ—;‘J!(k— )!
Then,
0 A+B)k 0 1 k k - o k AJBk—J
pAB — ( _ _{ ] kJ}:
YT Y T 225
Meanwhile,



we have
" —(Z )(Z ) ch,
where c, isa Cauchy product as follows.

AJBk—J

AO Bk Al Bk—l Ak—l Bl Ak BO _
JIk—= !

__+_ +...+ _+__
0! k! 1! (k-1)! (k-1)! 11 k! 01 “

M=

k:

I
o

Therefore, e*® =e”e®.

2) Since A and —A are always commutative, putting B=-A in 1) gives
A+(-A)

I =e’=e =efe ™

which implies that e”* is invertible and (e*) *=e™*
3) If P isinvertible, then
o PhP i PAP_l) Z(PAP_l)

=1 +P(Z—)P’1 P(Z—)Pl P"P. o

A

Remark 7.3 e” enjoys the property of e* when AB=BA. e” invertible is

analogous to the fact that e® #0.
3. Roleof e*' and its Computation

By the definition of e”, we have

A%t? Amt™

M=l +At+ +- 4 +---, teR,
2 m!

which is uniformly convergent on any [-h,h]c R, h>0.

Theorem 7.1 (Fundamental Theorem of Linear System with Constant Coefficient)

At

e”™ isaprinciple matrix solution of x'= Ax.

Proof. Denote ®(t)=e” . Obviously ®(0)=1, . Since e*' is uniformly



convergent on any compact interval of R, we have

3:2 m4 m-1
CI)’(t):(e’“)':A+A2t+At +-~-+At +
2! (m-=1)!
242 mg m
:A(In+At+At +~--+At +-4)
2! m!

= Ae’ = AD(t).

Therefore, e”' isa principle matrix solution of x'= Ax. o

Remark 7.4 Although e”' is well-defined and is a principle matrix solution of

X' = Ax, its computation is still nontrivial because e”' is the form of infinite series.

0 1
Example 7.1 If J :( 1 0], then J?=-I, and thus by induction J*"=(-1)"I,

and J>"'=(-1)"J.We have

0 tZJ ES) 2]+l O 1
JZ_;(ZJ)' (0 1) Z(; 21+1)' (—1 Oj

0 (_1)jt2j 0 (_1)jt2j+1

JZ(; (2))! ,Z? (2j+1)! _[cost sintj
(-1 it & (-1)itd | \-sint cost)’

z @+t = @

0 b
Example 7.2 If A:( b Oj' b0, then we have

at oot [ cos(bt) sin(bt)
© = _(—sin(bt) cos(bt)]'



a
Example 7.3 If A:£ b

b
a]’ b=0,then A=al,+bJ andwe have

Al galatIt _ palatobat _ pat cos(bt) sin(bt) |
—sin(bt) cos(bt)

2 1 0 1
Example 7.4 If A:(O ZJ’ then A=21,+Z, where Z:(O Oj with Z?=0.

Since 1, and Z commute, then

eAt =e(2|z+Z)t :eZ|zteZI =62teZt,
where
242 mg m 1 t
eZt:I2+Zt+Zt +---+Z t +e=l,+2t= :
21 m! 01
Therefore,

oAl g2t 1t .
01

Remark 7.5 Notice that e*' is a finite form in Example 7.4, which can be computed.

Infact, Z is nilpotent of order 2,ie. Z°=0.

Definition 7.2 A nxn matrix N is said to be nilpotent of order k if N¥=0

and N“'z0.

Definition 7.3 Let 4 be an eigenvalue of A.We define
1) A has an algebraic multiplicity of | if A is a zero of order | of

P(4) = det(A— A1)

2) A has a geometric multiplicity of k if k is the dimension of the subspace
spanned by the eigenvectors of A for A, i.e. the number of the existed linearly

independent eigenvectors belongs to A, denoted by k=dim Ker (A-Al,),

def .

where Ker (A-Al,) ={veR"|(A—A4l )v=0} isthe kernel of A-Al,.



Remark 7.6 Clearly k<I.If k=I, A isdiagonal.
Definition 7.4 Let A4 Dbe an eigenvalue of A. The generalized eigenspace of A
consists of the subspace

E,={veR":(A-1l)"v=0, some keN"}.

The elements of the generalized eigenspace are called generalized eigenvectors.

Lemma 7.1 E, isinvariantunder A.
Proof. We need to show that YVveE, = AveE,. If veE,, we have
(A-21.)“v=0.Then, (A=Al ) Av=(A-Al ) Av-A(A-Al )v=(A-Al)“'v=0,

andthus AveE,. o

Proposition 7.2 Let A be a nxn matrix. Then there exists a basis of C", which
consists of generalized eigenvectors, i.e.

C"=®E,.

A

Remark 7.7 If A is a real matrix, then there exists a basis of R", which consists of
generalized eigenvectors, i.e.

R"=0E,,

A
where A may be real or complex.

Definition 7.5 The matrix A is said semi-simple or diagonalizable if for each A,
algebraic and geometric multiplicity coincide, i.e. 1=k foreach A.

Theorem 7.2 (Decomposition Theorem) Let A be a nxn matrix with

eigenvalues A,, 4,,---,4, repeated according to their (algebraic) multiplicity. Then,

n

there exists the decomposition

A=S+N,
where the matrix S is semi-simple, the matrix N is nilpotent of order k no less
than the maximum of the algebraic multiplicities of the eigenvalues, and commute

with S,i.e. SN=NS.
Proof. Let {v,,v,,---,v,} be a basis of generalized eigenvectors for C" by
Proposition 7.2. Let P=(v,,v,,---,v,) and A=diag(4,,4,,--,4,), where 1,=21
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if v,eE, and P isinvertible. Then, we define

S=PAP™* and N=A-S.
This provides the decomposition A=S + N . By construction, S is semi-simple.

Next we show that SN =NS.Since SN-NS=S(A-S)-(A-S)S=SA-AS,
It suffices to show that SA=AS.If veE, , then AveE, and Sv=Av=Av.
(SA-AS)v=SAv-Alv=(S—-Al )Av=0.
For YveC", v isasum (linear combination) of generalized eigenvectors, we have
(SA—AS)v=0

forany veC".Sowe obtain SA-AS=0.

Finally we show that N is nilpotent. Choose k to be larger than or equal to
the largest algebraic multiplicity of the eigenvalues of A. If veE,, we have
Sv=Av.

N*v=(A-S)v=(A-S)* (A=Al )v

=(A-Al )(A-S)“'v=--=(A-Al )*v=0.
It is the same to get from N*v=0 for ve E, to N*v=0 for any veC". So

N¥=0. o

If A is a real matrix with repeated real eigenvalues, we have the following
form of Decomposition Theorem.

Theorem 7.3 (Decomposition Theorem) Let A be a real nxn matrix with real

eigenvalues A,, 4,,---,4, repeated according to their (algebraic) multiplicity. Then,

n

there exists the decomposition
A=S+N,

where the matrix S is semi-simple, i.e. S=Pdiag(/1j)P’1; N is nilpotent of
order k no less than the maximum of the algebraic multiplicities of the eigenvalues,

and commute with S,i.e. SN=NS.



Corollary 7.1 Based on Theorem 7.3, x"= Ax with x(0) =X, has the solution

N k—lt k-1

X(t) = Pdiag(e™" )P I, + Nt+---+ (k —1)!

1.

Proof. According to Decomposition Theorem, the fundamental theorem and 3) in
Proposition 7.1, we have

X(t) = eAtXO — e(S+N)tX0 — eSteNtX0 _ epdiag{i’}P_lteNtxo
k=14 k-1
= [ Z{Jt 71 oo N lt
= Pdiag(e”" )P I, + Nt+---+ D 1%,.

Corollary 7.2 If A has multiplicity n of A, then x'=Ax with x(0)=x, has

the solution
n-1¢ n-1
x(t):e“[ln+Nt+---+|\| ! 1%,-
(n=1)!
Proof. Since 4 has multiplicity n of A, Corollary 7.1 gives
X(t) = Pdiag(e” )P 1+ Nt 44 Nt 1k
" (n-11°°
n-14 n-1
:Pe“InP’l[In+Nt+---+'\I t 1%,
(n=-1)!

N n—1t n-1
(n=1)!

=e™ 1, +Nt+---+ 1%, -

Since P could be any basis of R" here, we take P as |, the usual basis for

R".Then S=diag(4) and N=A-S. o

Remark 7.8 In case A4 has multiplicity n of A, the solution is particularly easy to
be computed without finding a required basis. .

31
Example 7.5 Solve x'= Ax with x(0)=x,, where A:( 1 J.

2 0 1 1
Solution. A has A4, =4,=2. Thus, S:(O 2) and N=A—S=[ J Since

N2 =0, therefore,



1+t t
x(t):e“xo:e“(I2+Nt)x0:e2‘( jxo.

-t 1-t
1 00
Example 7.6 Solve x'= Ax with x(0)=x,,where A=|-1 2 0].
1 1 2

Solution. A has A4, =1, A,=4,=2. For A,=1, we find an eigenvector

0
v,=| 1 |; For 2=2, we only can find an eigenvector v, =| 0 |. We need to find
) 1

another generalized eigenvector for A =2, independent of v, by solving

1 00
(A-21)°v=[1 0 0|v=0,
-2 00
0
which yields v, =| 1 |. Then,
0
0 0
P=(v, v, Vvy)= 1|, P= 01
-2 10 -1 1
Then we compute
1 00 1 0 0 0O
S=P|0 2 0|P*'=|-1 2 0|; N=A-S=|0 0 Of,
0 0 2 2 0 2 -1 10
and N?=0. The solution is then given by
e' 0 0
x(t)=P| 0 e* 0 |[P'[I,+Nt]x,
0 0 e*
e' 0 0
= e'—e” e’ 0 |x,.

—2e'+(2-t)e* te* e*

If A isareal matrix with repeated complex eigenvalues, we have the following



form of Decomposition Theorem.

Theorem 7.4 (Decomposition Theorem) Let A be a real 2mx2m (2m=n)

matrix with complex eigenvalues A, =«;+if; and /TJ. =a,-iB;,j=L2,---,m,
repeated according to their (algebraic) multiplicity. Then, there exists a basis of
generalized complex eigenvectors w; =u; +iv, and W;=u;-iv;, j=12,---;m

for C" and {u,v,,---,u,,v,} is a basis for R". For any such a basis,

P=(u,vy,--,u,,Vv,) isinvertible and the decomposition

A=S+N,

o . .

where the matrix S is diagonal blocks, i.e. S:Pdiagﬂ ,BJ 'z‘DP‘l; N is
j j

nilpotent of order k no less than the maximum of the algebraic multiplicities of the

eigenvalues, and commute with S,i.e. SN =NS.

Corollary 7.2 Based on Theorem 7.4, x"= Ax with x(0) =X, has the solution

cos Bt sin gt
—sin B;t cos Bt

N k—lt k-1
(k—1)!

x(t):Pdiag(e“j{ })P‘l[ln+Nt+--~+ 1%, .
Proof. According to Decomposition Theorem, the fundamental theorem and 3) in

Proposition 7.1, we have

a. .
x(t) = eAth :e(S+N)tX0 :eSteNth =exp{P diag [{ ﬂj ﬁj}j P_lt}eNth
- [04

i i

: | cosp.t sing.t N <k
=P N PP+ Nt _

diag(e [—smﬂjt cosﬂjt}) [1,+Nt+ +(k—1)!]X°
0 -1 0 0
, 1 0 00

Example 7.7 Solve x"=Ax with x(0) =Xx,, where A= ,
0 0 0 -1
2 010

Solution. A has A=i and A1 =-i of multiplicity 2. The equation

10



(A=Al,)w=
2

is equivalent to z,=z,=0 and z,

w,=(0, 0, i, 1)".Also the equation

2
2
-2
4

(A-211,)°w=

is equivalent to z, =iz, and z,=iz,—

-1 0 0)z
—i 0_ 0| z, 0o
0 -1 -1}z,
0 1 -i)lz,
=iz, . Thus, we have one -eigenvector
2i 0 0\ z
-2 0 0]z
: =0
0 -2 2|z,
-2 -2i -2)\z

4

z,. We therefore choose the generalized

eigenvector WZ:(i, 1, 0, 1)T. Taking real and imaginary part of w, and w,

gives

u=(0, 0, 0, 1)

u,=(0, 1, 0, 1)

; v,=(0, 0, 1, 0);

; v,=(L 0, 0, 0).

According to Decomposition Theorem, we have

0 0
0 0
P:(ul’vl’UZ’Vz): 0 1
10
o . .
S:Pdiagﬂ ! ﬂ’DP‘l
P &

0O 00 1yY0 1 0 O
oo 10|-120 0 0
o1 00/l0 0 0 1

1 01 0)lO 0 -1 0

0 O

0 O
N=A-S=

0 -1

1 0

Thus, the solution is given by

0 1 0 -1 0 1
1 0 L |00 10

, P7= ;
00 0 1 00
10 1 0 00
0 -1 0 1) (0 -1 0 O
0 0 10/ (|1 00 Of
01 00|01 0 -1/
1 0 00/ (1 0 1 0
00
00

with N?=0.
00
00

11



cost sint 0 0

X(t) = P —sint cost 0 0 P[1, + Nt
0 0 cost sint ! 0
0 0 -—sint cost
0 0 0 1)( cost sint 0 0 0 -1 0 1)1 00
_0010—sintcost0 000100100X
|01 00| O 0 cost sint|{0 1 0 0|0 -t 1 0|
1 010 0 0 —sint cost)(1 00 0 01
cost —sint 0 0
sint cost 0 0
“| _tsint  sint—tcost cost —sint| "
sint +tcost —tsint sint  cost

Remark 7.9 If A has both real and complex repeated eigenvalues, a combination of
Theorem 7.3 and Theorem 7.4 can be used. See the following example for how.

-3 0 0
Example 7.7 Solve x'= Ax with x(0)=x,,where A=| 0 3 -2].
0 1 1

Solution. A has 4,=-3, 4,=2+i with /Tz =2-i. The corresponding eigenvectors

1 0 0 0
v,=[01]; w,=u,+iv,={1+i| = u,=1] and v,=|1].
0 1 1 0
Thus,
100 100
P=(0 1 1|, P'=|0 0 1|; N=0O, S=A.
010 01 -1
The solution is given by
e’ 0 0

xt)=P| 0 e™cosp,t e™'sing,t|Px,
0 —e™'sing,t e“ cosp,t

1 0)(e™ 0 0 1 0 O
=0 11 0 e®cost e*sint|[0 0 1 |x,
0 0)l 0 —e*sint e*cost)|\0 1 -1

12



e™ 0 0
e’ (cost+sint)  —2e*sint  |X,.
e?sint e (cost—sint)

0
0

Remark 7.10 There are several ways to compute e”', which is a finite form in fact.

The decomposition method gives a clear algebra structure property. P is a basis of
generalized eigenvectors, S is semi-simple (diagonalizable) and A=S+ N, where

N is nilpotent, SN = NS . Although the Jordan form method, the Putzer algorithm

and the others can work for computing e”', which are not listed here. They don’t

have such a nice structure decomposition property.

4. Summary

At

e ¢ plays akey role in linear systems with constant coefficient. Its computation is

completely solved by Decomposition Theorems.

e Forsolving x'=Ax+h(t), x(0)=x,,we have the formula

X(t) =e*x, + [ Ote“t*s) h(s)ds .

Homework

Problem 7.1 The “Putzer Algorithm” given below is another method for computing
e™ when we have multiple eigenvalues:
n-1
oAt Zrm(t)Pj ,

i=0

where Py=1,, P, =(A-2,1,)(A=2,1)--(A=41,), j=12,--,n, and r(t),

j=12,---,n, are the solutions of the first-order linear differential equations and

initial conditions
r/(t)=A,r(t) with r(0)=1;

r,(t)=A4,r,(t)+r(t) with r,(0)=0;

13



rr¢)y=2r (t)+r, _,(t) with r (0)=0.

1) Use the Putzer Algorithm to compute e” for the matrix A given in Example

7.5 and Example 7.6.
2) Can you show the Putzer Algorithm? You are encouraged to do it. (Selective)

(Hlnt Pn = (A_/In I n)(A_ﬂ‘n—lln)'”(A_lll n) :Onxn)

Problem 7.2 If J=diag(J;), where J; is a matrix of order n;(>0) and

> n,=n, showthat e’' =diag(e”").

=

A1 -0
o 4 1 " "
Problem7.31f J=|" -0 , show that
R |
O O ﬂ'mxm
2 m-1
1t — t
21 (m-1)!
tm—z
0O 1 t
e’ =e" (m-2)!
0 0 1
0 O 1 mxm
Problem 7.4 1f J =diag(J;), where
A1 S0
0 4, 1 .
J;= ' : -0
|
0 0 1

1/ nixn:
njxn;

is a Jordan matrix block of order n;, (>0) with an:n, show that
j=1

e’ =diag(e’"") , where

14



15

n;-1

(n; !

n.-2

t i
(n;-2)!




