Outline

1. Motivation Example

2. Basic Properties of e^{A}

3. Role of $e^{A t}$ and Computation

4. Summary

1. Motivation Example

For the linear system as follows

$$
x^{\prime}=A(t) x+h(t), \quad x\left(t_{0}\right)=x_{0},
$$

we have an algebraic structure of solution given by

$$
x(t)=\Phi(t) \Phi^{-1}\left(t_{0}\right) x_{0}+\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(s) h(s) \mathrm{d} s,
$$

where $\Phi(t)$ is a fundamental matrix solution. However, this result doesn't tell us how to find $\Phi(t)$. In fact, it has no way to get an explicit solution in general. See the example of Ricatti equation

$$
x^{\prime}=t^{2}+x^{2},
$$

which has no explicit solution. Taking a transformation: $x=-\frac{u^{\prime}}{u}$, we have

$$
\binom{u^{\prime}}{v^{\prime}}=\left(\begin{array}{cc}
0 & 1 \\
t^{2} & 0
\end{array}\right)\binom{u}{v}
$$

This is a type of form: $x^{\prime}=A(t) x$. We conclude that we are not able to solve the above particular linear time-varying system. Otherwise, we can solve the Ricatti equation. It shows that we can't expect to solve $\Phi(t)$ for $x^{\prime}=A(t) x$ in general without restriction. There is no way to find a systematic method to solve $\Phi(t)$.

If $A(t) \equiv A$, we are able to find its fundamental matrix solution $\Phi(t)=e^{A t}$, which is an exponential of the matrix A.

The following questions need to solve:

- Definition of e^{A} and Basic Properties;
- Role of $e^{A t}$ and its Computation;

2. Basic Properties of e^{A}

Definition 7.1 For a real $n \times n$ matrix A, define

$$
e^{A}=I_{n}+A+\frac{A^{2}}{2!}+\cdots+\frac{A^{m}}{m!}+\cdots=\sum_{k=0}^{\infty} \frac{A^{k}}{k!},
$$

where $A^{0}=I_{n}$.

Remark 7.1 Since $\left\|I_{n}\right\|=1,\left\|A^{m}\right\| \leq\|A\|^{m}$, the series

$$
1+\|A\|+\frac{\|A\|^{2}}{2!}+\cdots+\frac{\|A\|^{m}}{m!}+\cdots=e^{\|A\|}
$$

is convergent. Therefore, e^{A} is well defined.

Remark 7.2 Unlike the exponential of scalar e^{a}, e^{A} will be much complicated.

Proposition 7.1 Let A, B, P be all $n \times n$ matrices. Then

1) If $A B=B A$, then $e^{A+B}=e^{A} e^{B}$.
2) For any $A \in L\left(K^{n}\right), e^{A}$ is invertible and $\left(e^{A}\right)^{-1}=e^{-A}$.
3) If P is invertible, then $e^{P^{-1} A P}=P^{-1} e^{A} P$.

Proof. 1) Since $A B=B A$, the binomial theorem holds for matrix, that is,

$$
(A+B)^{k}=\sum_{j=0}^{k} \frac{k!}{j!(k-j)!} A^{j} B^{k-j} .
$$

Then,

$$
e^{A+B}=\sum_{k=0}^{\infty} \frac{(A+B)^{k}}{k!}=\sum_{k=0}^{\infty} \frac{1}{k!}\left\{\sum_{j=0}^{k} \frac{k!}{j!(k-j)!} A^{j} B^{k-j}\right\}=\sum_{k=0}^{\infty} \sum_{j=0}^{k} \frac{A^{j} B^{k-j}}{j!(k-j)!} .
$$

Meanwhile,

$$
e^{A}=\sum_{k=0}^{\infty} \frac{A^{k}}{k!} ; \quad e^{B}=\sum_{j=0}^{\infty} \frac{B^{j}}{j!},
$$

we have

$$
e^{A} e^{B}=\left(\sum_{k=0}^{\infty} \frac{A^{k}}{k!}\right)\left(\sum_{j=0}^{\infty} \frac{B^{j}}{j!}\right) \stackrel{\Delta}{=} \sum_{k=0}^{\infty} c_{k},
$$

where c_{k} is a Cauchy product as follows.

$$
c_{k}=\frac{A^{0}}{0!} \frac{B^{k}}{k!}+\frac{A^{1}}{1!} \frac{B^{k-1}}{(k-1)!}+\cdots+\frac{A^{k-1}}{(k-1)!} \frac{B^{1}}{1!}+\frac{A^{k}}{k!} \frac{B^{0}}{0!}=\sum_{j=0}^{k} \frac{A^{j} B^{k-j}}{j!(k-j)!}
$$

Therefore, $e^{A+B}=e^{A} e^{B}$.
2) Since A and $-A$ are always commutative, putting $B=-A$ in 1) gives

$$
I_{n}=e^{0}=e^{A+(-A)}=e^{A} e^{-A},
$$

which implies that e^{A} is invertible and $\left(e^{A}\right)^{-1}=e^{-A}$.
3) If P is invertible, then

$$
\begin{aligned}
e^{P A P^{-1}} & =\sum_{k=0}^{\infty} \frac{\left(P A P^{-1}\right)^{k}}{k!}=I+\sum_{k=1}^{\infty} \frac{\left(P A P^{-1}\right)^{k}}{k!} \\
& =I_{n}+P\left(\sum_{k=1}^{\infty} \frac{A^{k}}{k!}\right) P^{-1}=P\left(\sum_{k=0}^{\infty} \frac{A^{k}}{k!}\right) P^{-1}=P^{-1} e^{A} P .
\end{aligned}
$$

Remark 7.3 e^{A} enjoys the property of e^{a} when $A B=B A$. e^{A} invertible is analogous to the fact that $e^{a} \neq 0$.

3. Role of $e^{A t}$ and its Computation

By the definition of e^{A}, we have

$$
e^{A t}=I_{n}+A t+\frac{A^{2} t^{2}}{2!}+\cdots+\frac{A^{m} t^{m}}{m!}+\cdots, \quad t \in R
$$

which is uniformly convergent on any $[-h, h] \subset R, h>0$.

Theorem 7.1 (Fundamental Theorem of Linear System with Constant Coefficient) $e^{A t}$ is a principle matrix solution of $x^{\prime}=A x$.

Proof. Denote $\Phi(t)=e^{A t}$. Obviously $\Phi(0)=I_{n}$. Since $e^{A t}$ is uniformly
convergent on any compact interval of R, we have

$$
\begin{aligned}
\Phi^{\prime}(t) & =\left(e^{A t}\right)^{\prime}=A+A^{2} t+\frac{A^{3} t^{2}}{2!}+\cdots+\frac{A^{m} t^{m-1}}{(m-1)!}+\cdots \\
& =A\left(I_{n}+A t+\frac{A^{2} t^{2}}{2!}+\cdots+\frac{A^{m} t^{m}}{m!}+\cdots\right) \\
& =A e^{A t}=A \Phi(t)
\end{aligned}
$$

Therefore, $e^{A t}$ is a principle matrix solution of $x^{\prime}=A x$.

Remark 7.4 Although $e^{A t}$ is well-defined and is a principle matrix solution of $x^{\prime}=A x$, its computation is still nontrivial because $e^{A t}$ is the form of infinite series.

Example 7.1 If $J=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, then $J^{2}=-I_{2}$ and thus by induction $J^{2 n}=(-1)^{n} I_{2}$ and $J^{2 n+1}=(-1)^{n} J$. We have

$$
\begin{aligned}
e^{t J} & =\sum_{j=0}^{\infty} \frac{t^{j} J^{j}}{j!}=\sum_{j=0}^{\infty} \frac{t^{2 j}}{(2 j)!} J^{2 j}+\sum_{j=0}^{\infty} \frac{t^{2 j+1}}{(2 j+1)!} J^{2 j+1} \\
& =\sum_{j=0}^{\infty} \frac{t^{2 j}}{(2 j)!}(-1)^{j} I_{2}+\sum_{j=0}^{\infty} \frac{t^{2 j+1}}{(2 j+1)!}(-1)^{j} J \\
& =\sum_{j=0}^{\infty} \frac{t^{2 j}}{(2 j)!}(-1)^{j}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\sum_{j=0}^{\infty} \frac{t^{2 j+1}}{(2 j+1)!}(-1)^{j}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
\sum_{j=0}^{\infty} \frac{(-1)^{j} t^{2 j}}{(2 j)!} & \sum_{j=0}^{\infty} \frac{(-1)^{j} t^{2 j+1}}{(2 j+1)!} \\
-\sum_{j=0}^{\infty} \frac{(-1)^{j} t^{2 j+1}}{(2 j+1)!} & \sum_{j=0}^{\infty} \frac{(-1)^{j} t^{2 j}}{(2 j)!}
\end{array}\right)=\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right) .
\end{aligned}
$$

Example 7.2 If $A=\left(\begin{array}{cc}0 & b \\ -b & 0\end{array}\right), b \neq 0$, then we have

$$
e^{A t}=e^{b J t}=\left(\begin{array}{cc}
\cos (b t) & \sin (b t) \\
-\sin (b t) & \cos (b t)
\end{array}\right) .
$$

Example 7.3 If $A=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right), b \neq 0$, then $A=a I_{2}+b J$ and we have

$$
e^{A t}=e^{a I_{2} t+b J t}=e^{a I_{2} t} e^{b J t}=e^{a t}\left(\begin{array}{cc}
\cos (b t) & \sin (b t) \\
-\sin (b t) & \cos (b t)
\end{array}\right) .
$$

Example 7.4 If $A=\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)$, then $A=2 I_{2}+Z$, where $Z=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ with $Z^{2}=O$.
Since I_{2} and Z commute, then

$$
e^{A t}=e^{\left(2 I_{2}+Z\right) t}=e^{2 I_{2} t} e^{Z t}=e^{2 t} e^{Z t},
$$

where

$$
e^{Z t}=I_{2}+Z t+\frac{Z^{2} t^{2}}{2!}+\cdots+\frac{Z^{m} t^{m}}{m!}+\cdots=I_{2}+Z t=\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right) .
$$

Therefore,

$$
e^{A t}=e^{2 t}\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)
$$

Remark 7.5 Notice that $e^{Z t}$ is a finite form in Example 7.4, which can be computed. In fact, Z is nilpotent of order 2 , i.e. $Z^{2}=O$.

Definition 7.2 A $n \times n$ matrix N is said to be nilpotent of order k if $N^{k}=O$ and $N^{k-1} \neq O$.

Definition 7.3 Let λ be an eigenvalue of A. We define

1) λ has an algebraic multiplicity of l if λ is a zero of order l of $P(\lambda)=\operatorname{det}(A-\lambda I) ;$
2) λ has a geometric multiplicity of k if k is the dimension of the subspace spanned by the eigenvectors of A for λ, i.e. the number of the existed linearly independent eigenvectors belongs to λ, denoted by $k=\operatorname{dim} \operatorname{Ker}\left(A-\lambda I_{n}\right)$, where $\operatorname{Ker}\left(A-\lambda I_{n}\right) \stackrel{\text { def. }}{=}\left\{v \in R^{n} \mid\left(A-\lambda I_{n}\right) v=0\right\}$ is the kernel of $A-\lambda I_{n}$.

Remark 7.6 Clearly $k \leq l$. If $k=l, A$ is diagonal.

Definition 7.4 Let λ be an eigenvalue of A. The generalized eigenspace of λ consists of the subspace

$$
E_{\lambda}=\left\{v \in R^{n}:\left(A-\lambda I_{n}\right)^{k} v=0, \text { some } k \in N^{+}\right\} .
$$

The elements of the generalized eigenspace are called generalized eigenvectors.

Lemma 7.1 E_{λ} is invariant under A.

Proof. We need to show that $\forall v \in E_{\lambda} \Rightarrow A v \in E_{\lambda}$. If $v \in E_{\lambda}$, we have $\left(A-\lambda I_{n}\right)^{k} v=0$. Then, $\left(A-\lambda I_{n}\right)^{k} A v=\left(A-\lambda I_{n}\right)^{k} A v-\lambda\left(A-\lambda I_{n}\right)^{k} v=\left(A-\lambda I_{n}\right)^{k+1} v=0$, and thus $A v \in E_{\lambda}$.

Proposition 7.2 Let A be a $n \times n$ matrix. Then there exists a basis of C^{n}, which consists of generalized eigenvectors, i.e.

$$
C^{n}=\underset{\lambda}{\oplus} E_{\lambda} .
$$

Remark 7.7 If A is a real matrix, then there exists a basis of R^{n}, which consists of generalized eigenvectors, i.e.

$$
R^{n}=\underset{\lambda}{\oplus} E_{\lambda},
$$

where λ may be real or complex.

Definition 7.5 The matrix A is said semi-simple or diagonalizable if for each λ, algebraic and geometric multiplicity coincide, i.e. $l=k$ for each λ.

Theorem 7.2 (Decomposition Theorem) Let A be a $n \times n$ matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ repeated according to their (algebraic) multiplicity. Then, there exists the decomposition

$$
A=S+N,
$$

where the matrix S is semi-simple, the matrix N is nilpotent of order k no less than the maximum of the algebraic multiplicities of the eigenvalues, and commute with S, i.e. $S N=N S$.

Proof. Let $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be a basis of generalized eigenvectors for C^{n} by Proposition 7.2. Let $P=\left(v_{1}, v_{2}, \cdots, v_{n}\right)$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)$, where $\lambda_{j}=\lambda$
if $v_{j} \in E_{\lambda}$ and P is invertible. Then, we define

$$
S=P \Lambda P^{-1} \text { and } N=A-S .
$$

This provides the decomposition $A=S+N$. By construction, S is semi-simple.
Next we show that $S N=N S$. Since $S N-N S=S(A-S)-(A-S) S=S A-A S$, It suffices to show that $S A=A S$. If $v \in E_{\lambda}$, then $A v \in E_{\lambda}$ and $S v=A v=\lambda v$.

$$
(S A-A S) v=S A v-A \lambda v=\left(S-\lambda I_{n}\right) A v=0 .
$$

For $\forall v \in C^{n}, v$ is a sum (linear combination) of generalized eigenvectors, we have

$$
(S A-A S) v=0
$$

for any $v \in C^{n}$. So we obtain $S A-A S=O$.
Finally we show that N is nilpotent. Choose k to be larger than or equal to the largest algebraic multiplicity of the eigenvalues of A. If $v \in E_{\lambda}$, we have $S v=\lambda v$.

$$
\begin{aligned}
N^{k} v & =(A-S)^{k} v=(A-S)^{k-1}\left(A-\lambda I_{n}\right) v \\
& =\left(A-\lambda I_{n}\right)(A-S)^{k-1} v=\cdots=\left(A-\lambda I_{n}\right)^{k} v=0 .
\end{aligned}
$$

It is the same to get from $N^{k} v=0$ for $v \in E_{\lambda}$ to $N^{k} v=0$ for any $v \in C^{n}$. So $N^{k}=O$.

If A is a real matrix with repeated real eigenvalues, we have the following form of Decomposition Theorem.

Theorem 7.3 (Decomposition Theorem) Let A be a real $n \times n$ matrix with real eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ repeated according to their (algebraic) multiplicity. Then, there exists the decomposition

$$
A=S+N,
$$

where the matrix S is semi-simple, i.e. $S=P \operatorname{diag}\left(\lambda_{j}\right) P^{-1} ; N$ is nilpotent of order k no less than the maximum of the algebraic multiplicities of the eigenvalues, and commute with S, i.e. $S N=N S$.

Corollary 7.1 Based on Theorem 7.3, $x^{\prime}=A x$ with $x(0)=x_{0}$ has the solution

$$
x(t)=P \operatorname{diag}\left(e^{\lambda_{j} t}\right) P^{-1}\left[I_{n}+N t+\cdots+\frac{N^{k-1} t^{k-1}}{(k-1)!}\right] x_{0} .
$$

Proof. According to Decomposition Theorem, the fundamental theorem and 3) in Proposition 7.1, we have

$$
\begin{aligned}
x(t) & =e^{A t} x_{0}=e^{(S+N) t} x_{0}=e^{S t} e^{N t} x_{0}=e^{P \operatorname{diag}\left\{\lambda_{j}\right\} P^{-1} t} e^{N t} x_{0} \\
& =P \operatorname{diag}\left(e^{\lambda_{j} t}\right) P^{-1}\left[I_{n}+N t+\cdots+\frac{N^{k-1} t^{k-1}}{(k-1)!}\right] x_{0} .
\end{aligned}
$$

Corollary 7.2 If λ has multiplicity n of A, then $x^{\prime}=A x$ with $x(0)=x_{0}$ has the solution

$$
x(t)=e^{\lambda t}\left[I_{n}+N t+\cdots+\frac{N^{n-1} t^{n-1}}{(n-1)!}\right] x_{0} .
$$

Proof. Since λ has multiplicity n of A, Corollary 7.1 gives

$$
\begin{aligned}
x(t) & =P \operatorname{diag}\left(e^{\lambda t}\right) P^{-1}\left[I_{n}+N t+\cdots+\frac{N^{n-1} t^{n-1}}{(n-1)!}\right] x_{0} \\
& =P e^{\lambda t} I_{n} P^{-1}\left[I_{n}+N t+\cdots+\frac{N^{n-1} t^{n-1}}{(n-1)!}\right] x_{0} \\
& =e^{\lambda t}\left[I_{n}+N t+\cdots+\frac{N^{n-1} t^{n-1}}{(n-1)!}\right] x_{0} .
\end{aligned}
$$

Since P could be any basis of R^{n} here, we take P as I_{n}, the usual basis for R^{n}. Then $S=\operatorname{diag}(\lambda)$ and $N=A-S$.

Remark 7.8 In case λ has multiplicity n of A, the solution is particularly easy to be computed without finding a required basis. .

Example 7.5 Solve $x^{\prime}=A x$ with $x(0)=x_{0}$, where $A=\left(\begin{array}{cc}3 & 1 \\ -1 & 1\end{array}\right)$.
Solution. A has $\lambda_{1}=\lambda_{2}=2$. Thus, $S=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ and $N=A-S=\left(\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right)$. Since $N^{2}=O$, therefore,

$$
x(t)=e^{A t} x_{0}=e^{2 t}\left(I_{2}+N t\right) x_{0}=e^{2 t}\left(\begin{array}{cc}
1+t & t \\
-t & 1-t
\end{array}\right) x_{0}
$$

Example 7.6 Solve $x^{\prime}=A x$ with $x(0)=x_{0}$, where $A=\left(\begin{array}{ccc}1 & 0 & 0 \\ -1 & 2 & 0 \\ 1 & 1 & 2\end{array}\right)$.
Solution. A has $\lambda_{1}=1, \lambda_{2}=\lambda_{3}=2$. For $\lambda_{1}=1$, we find an eigenvector $v_{1}=\left(\begin{array}{c}1 \\ 1 \\ -2\end{array}\right)$; For $\lambda=2$, we only can find an eigenvector $v_{2}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$. We need to find another generalized eigenvector for $\lambda=2$, independent of v_{2} by solving

$$
(A-2 \lambda)^{2} v=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 0 \\
-2 & 0 & 0
\end{array}\right) v=0
$$

which yields $v_{3}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$. Then,

$$
P=\left(\begin{array}{lll}
v_{1}, & v_{2}, & v_{3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 1 \\
-2 & 1 & 0
\end{array}\right), \quad P^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 0 & 1 \\
-1 & 1 & 0
\end{array}\right) .
$$

Then we compute

$$
S=P\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right) P^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 2 & 0 \\
2 & 0 & 2
\end{array}\right) ; \quad N=A-S=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
-1 & 1 & 0
\end{array}\right),
$$

and $N^{2}=O$. The solution is then given by

$$
\begin{aligned}
x(t) & =P\left(\begin{array}{ccc}
e^{t} & 0 & 0 \\
0 & e^{2 t} & 0 \\
0 & 0 & e^{2 t}
\end{array}\right) P^{-1}\left[I_{3}+N t\right] x_{0} \\
& =\left(\begin{array}{ccc}
e^{t} & 0 & 0 \\
e^{t}-e^{2 t} & e^{2 t} & 0 \\
-2 e^{t}+(2-t) e^{2 t} & t e^{2 t} & e^{2 t}
\end{array}\right) x_{0} .
\end{aligned}
$$

If A is a real matrix with repeated complex eigenvalues, we have the following
form of Decomposition Theorem.

Theorem 7.4 (Decomposition Theorem) Let A be a real $2 m \times 2 m(2 m=n)$ matrix with complex eigenvalues $\lambda_{j}=\alpha_{j}+i \beta_{j}$ and $\bar{\lambda}_{j}=\alpha_{j}-i \beta_{j}, j=1,2, \cdots, m$, repeated according to their (algebraic) multiplicity. Then, there exists a basis of generalized complex eigenvectors $w_{j}=u_{j}+i v_{j}$ and $\bar{w}_{j}=u_{j}-i v_{j}, j=1,2, \cdots, m$ for C^{n} and $\left\{u_{1}, v_{1}, \cdots, u_{m}, v_{m}\right\}$ is a basis for R^{n}. For any such a basis, $P=\left(u_{1}, v_{1}, \cdots, u_{m}, v_{m}\right)$ is invertible and the decomposition

$$
A=S+N,
$$

where the matrix S is diagonal blocks, i.e. $S=\operatorname{Pdiag}\left(\left[\begin{array}{cc}\alpha_{j} & \beta_{j} \\ -\beta_{j} & \alpha_{j}\end{array}\right]\right) P^{-1} ; N$ is nilpotent of order k no less than the maximum of the algebraic multiplicities of the eigenvalues, and commute with S, i.e. $S N=N S$.

Corollary 7.2 Based on Theorem 7.4, $x^{\prime}=A x$ with $x(0)=x_{0}$ has the solution

$$
x(t)=P \operatorname{diag}\left(e^{\alpha_{j} t}\left[\begin{array}{cc}
\cos \beta_{j} t & \sin \beta_{j} t \\
-\sin \beta_{j} t & \cos \beta_{j} t
\end{array}\right]\right) P^{-1}\left[I_{n}+N t+\cdots+\frac{N^{k-1} t^{k-1}}{(k-1)!}\right] x_{0} .
$$

Proof. According to Decomposition Theorem, the fundamental theorem and 3) in Proposition 7.1, we have

$$
\begin{aligned}
x(t) & =e^{A t} x_{0}=e^{(S+N) t} x_{0}=e^{S t} e^{N t} x_{0}=\exp \left\{P \operatorname{diag}\left(\left[\begin{array}{cc}
\alpha_{j} & \beta_{j} \\
-\beta_{j} & \alpha_{j}
\end{array}\right]\right) P^{-1} t\right\} e^{N t} x_{0} \\
& =P \operatorname{diag}\left(e^{\alpha_{j} t}\left[\begin{array}{cc}
\cos \beta_{j} t & \sin \beta_{j} t \\
-\sin \beta_{j} t & \cos \beta_{j} t
\end{array}\right]\right) P^{-1}\left[I_{n}+N t+\cdots+\frac{N^{k-1} t^{k-1}}{(k-1)!}\right] x_{0} .
\end{aligned}
$$

Example 7.7 Solve $x^{\prime}=A x$ with $x(0)=x_{0}$, where $A=\left(\begin{array}{cccc}0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 2 & 0 & 1 & 0\end{array}\right)$.
Solution. A has $\lambda=i$ and $\bar{\lambda}=-i$ of multiplicity 2. The equation

$$
\left(A-\lambda I_{4}\right) w=\left(\begin{array}{cccc}
-i & -1 & 0 & 0 \\
1 & -i & 0 & 0 \\
0 & 0 & -i & -1 \\
2 & 0 & 1 & -i
\end{array}\right)\left(\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right)=0
$$

is equivalent to $z_{1}=z_{2}=0$ and $z_{3}=i z_{4}$. Thus, we have one eigenvector $w_{1}=(0, \quad 0, \quad i, 1)^{T}$. Also the equation

$$
\left(A-\lambda I_{4}\right)^{2} w=\left(\begin{array}{cccc}
-2 & 2 i & 0 & 0 \\
-2 i & -2 & 0 & 0 \\
-2 & 0 & -2 & 2 i \\
-4 i & -2 & -2 i & -2
\end{array}\right)\left(\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right)=0
$$

is equivalent to $z_{1}=i z_{2}$ and $z_{3}=i z_{4}-z_{1}$. We therefore choose the generalized eigenvector $w_{2}=(i, 1,0,1)^{T}$. Taking real and imaginary part of w_{1} and w_{2} gives

$$
\begin{aligned}
& u_{1}=\left(\begin{array}{llll}
0, & 0, & 0, & 1
\end{array}\right)^{T} ; v_{1}=\left(\begin{array}{llll}
0, & 0 & 1, & 0
\end{array}\right)^{T} \\
& u_{2}=\left(\begin{array}{llll}
0, & 1, & 0, & 1
\end{array}\right)^{T} ; v_{2}=\left(\begin{array}{llll}
1, & 0, & 0 & 0
\end{array}\right)^{T}
\end{aligned}
$$

According to Decomposition Theorem, we have

$$
\left.\begin{array}{c}
P=\left(u_{1}, v_{1}, u_{2}, v_{2}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0
\end{array}\right) ; \quad P^{-1}=\left(\begin{array}{cccc}
0 & -1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) ; \\
S
\end{array}\right) ; \text { Pdiag }\left(\left[\begin{array}{cc}
\alpha_{j} & \beta_{j} \\
-\beta_{j} & \alpha_{j}
\end{array}\right]\right) P^{-1} .
$$

Thus, the solution is given by

$$
\begin{aligned}
& x(t)=P\left(\begin{array}{cccc}
\cos t & \sin t & 0 & 0 \\
-\sin t & \cos t & 0 & 0 \\
0 & 0 & \cos t & \sin t \\
0 & 0 & -\sin t & \cos t
\end{array}\right) P^{-1}\left[I_{4}+N t\right] x_{0} \\
& =\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{cccc}
\cos t & \sin t & 0 & 0 \\
-\sin t & \cos t & 0 & 0 \\
0 & 0 & \cos t & \sin t \\
0 & 0 & -\sin t & \cos t
\end{array}\right)\left(\begin{array}{cccc}
0 & -1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -t & 1 & 0 \\
t & 0 & 0 & 1
\end{array}\right) x_{0} \\
& =\left(\begin{array}{cccc}
\cos t & -\sin t & 0 & 0 \\
\sin t & \cos t & 0 & 0 \\
-t \sin t & \sin t-t \cos t & \cos t & -\sin t \\
\sin t+t \cos t & -t \sin t & \sin t & \cos t
\end{array}\right) x_{0} .
\end{aligned}
$$

Remark 7.9 If A has both real and complex repeated eigenvalues, a combination of Theorem 7.3 and Theorem 7.4 can be used. See the following example for how.

Example 7.7 Solve $x^{\prime}=A x$ with $x(0)=x_{0}$, where $A=\left(\begin{array}{ccc}-3 & 0 & 0 \\ 0 & 3 & -2 \\ 0 & 1 & 1\end{array}\right)$.
Solution. A has $\lambda_{1}=-3, \lambda_{2}=2+i$ with $\bar{\lambda}_{2}=2-i$. The corresponding eigenvectors

$$
v_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) ; w_{2}=u_{2}+i v_{2}=\left(\begin{array}{c}
0 \\
1+i \\
1
\end{array}\right) \Rightarrow u_{2}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \text { and } v_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) .
$$

Thus,

$$
P=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right), P^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & -1
\end{array}\right) ; \quad N=O, \quad S=A .
$$

The solution is given by

$$
\begin{aligned}
x(t) & =P\left(\begin{array}{ccc}
e^{\lambda_{1} t} & 0 & 0 \\
0 & e^{\alpha_{2} t} \cos \beta_{2} t & e^{\alpha_{2} t} \sin \beta_{2} t \\
0 & -e^{\alpha_{2} t} \sin \beta_{2} t & e^{\alpha_{2} t} \cos \beta_{2} t
\end{array}\right) P^{-1} x_{0} \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
e^{-3 t} & 0 & 0 \\
0 & e^{2 t} \cos t & e^{2 t} \sin t \\
0 & -e^{2 t} \sin t & e^{2 t} \cos t
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & -1
\end{array}\right) x_{0}
\end{aligned}
$$

$$
=\left(\begin{array}{ccc}
e^{-3 t} & 0 & 0 \\
0 & e^{2 t}(\cos t+\sin t) & -2 e^{2 t} \sin t \\
0 & e^{2 t} \sin t & e^{2 t}(\cos t-\sin t)
\end{array}\right) x_{0} .
$$

Remark 7.10 There are several ways to compute $e^{A t}$, which is a finite form in fact. The decomposition method gives a clear algebra structure property. P is a basis of generalized eigenvectors, S is semi-simple (diagonalizable) and $A=S+N$, where N is nilpotent, $S N=N S$. Although the Jordan form method, the Putzer algorithm and the others can work for computing $e^{A t}$, which are not listed here. They don't have such a nice structure decomposition property.

4. Summary

- $e^{\text {At }}$ plays a key role in linear systems with constant coefficient. Its computation is completely solved by Decomposition Theorems.
- For solving $x^{\prime}=A x+h(t), x(0)=x_{0}$, we have the formula

$$
x(t)=e^{A t} x_{0}+\int_{0}^{t} e^{A(t-s)} h(s) d s
$$

Homework

Problem 7.1 The "Putzer Algorithm" given below is another method for computing $e^{A t}$ when we have multiple eigenvalues:

$$
e^{A t}=\sum_{j=0}^{n-1} r_{j+1}(t) P_{j},
$$

where $P_{0}=I_{n}, P_{j}=\left(A-\lambda_{j} I_{n}\right)\left(A-\lambda_{j-1} I_{n}\right) \cdots\left(A-\lambda_{1} I_{n}\right), j=1,2, \cdots, n$, and $r_{j}(t)$, $j=1,2, \cdots, n$, are the solutions of the first-order linear differential equations and initial conditions

$$
\begin{gathered}
r_{1}^{\prime}(t)=\lambda_{1} r_{1}(t) \text { with } r_{1}(0)=1 ; \\
r_{2}^{\prime}(t)=\lambda_{2} r_{2}(t)+r_{1}(t) \text { with } r_{2}(0)=0 ;
\end{gathered}
$$

$$
r_{n}^{\prime}(t)=\lambda_{n} r_{n}(t)+r_{n-1}(t) \text { with } r_{n}(0)=0 .
$$

1) Use the Putzer Algorithm to compute $e^{A t}$ for the matrix A given in Example 7.5 and Example 7.6.
2) Can you show the Putzer Algorithm? You are encouraged to do it. (Selective) (Hint: $\left.P_{n}=\left(A-\lambda_{n} I_{n}\right)\left(A-\lambda_{n-1} I_{n}\right) \cdots\left(A-\lambda_{1} I_{n}\right)=O_{n \times n}\right)$

Problem 7.2 If $J=\operatorname{diag}\left(J_{j}\right)$, where J_{j} is a matrix of order $n_{j}(>0)$ and $\sum_{j=1}^{r} n_{j}=n$, show that $e^{J t}=\operatorname{diag}\left(e^{J_{j} t}\right)$.

Problem 7.3 If $J=\left(\begin{array}{ccccc}\lambda & 1 & 0 & \ddots & 0 \\ 0 & \lambda & 1 & \ddots & \ddots \\ \ddots & \ddots & \ddots & \ddots & 0 \\ \ddots & \ddots & \ddots & \ddots & 1 \\ 0 & \ddots & \ddots & 0 & \lambda\end{array}\right)_{m \times m}$, show that

$$
e^{J t}=e^{\lambda t}\left(\begin{array}{ccccc}
1 & t & \frac{t^{2}}{2!} & \cdots & \frac{t^{m-1}}{(m-1)!} \\
0 & 1 & t & \cdots & \frac{t^{m-2}}{(m-2)!} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \ddots & 0 & 1 & t \\
0 & \cdots & 0 & 0 & 1
\end{array}\right)_{m \times m} .
$$

Problem 7.4 If $J=\operatorname{diag}\left(J_{j}\right)$, where

$$
J_{j}=\left(\begin{array}{ccccc}
\lambda_{j} & 1 & 0 & \ddots & 0 \\
0 & \lambda_{j} & 1 & \ddots & \ddots \\
\ddots & \ddots & \ddots & \ddots & 0 \\
\ddots & \ddots & \ddots & \ddots & 1 \\
0 & \ddots & \ddots & 0 & \lambda_{j}
\end{array}\right)_{n_{j} \times n_{j}}
$$

is a Jordan matrix block of order $n_{j}(>0)$ with $\sum_{j=1}^{r} n_{j}=n$, show that $e^{J t}=\operatorname{diag}\left(e^{J_{j} t}\right)$, where

$$
e^{J_{j} t}=e^{\lambda_{j} t}\left(\begin{array}{ccccc}
1 & t & \frac{t^{2}}{2!} & \cdots & \frac{t^{n_{j}-1}}{\left(n_{j}-1\right)!} \\
0 & 1 & t & \cdots & \frac{t^{n_{j}-2}}{\left(n_{j}-2\right)!} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \ddots & 0 & 1 & t \\
0 & \cdots & 0 & 0 & 1
\end{array}\right)_{n_{j} \times n_{j}} .
$$

