Outline

- **1.** Motivation Example
- **2.** Basic Properties of e^A
- **3.** Role of e^{At} and Computation
- 4. Summary

1. Motivation Example

For the linear system as follows

$$x' = A(t)x + h(t), x(t_0) = x_0,$$

we have an algebraic structure of solution given by

$$x(t) = \Phi(t)\Phi^{-1}(t_0)x_0 + \Phi(t)\int_{t_0}^t \Phi^{-1}(s)h(s)\,\mathrm{d}s\,,$$

where $\Phi(t)$ is a fundamental matrix solution. However, this result doesn't tell us how to find $\Phi(t)$. In fact, it has no way to get an explicit solution in general. See the example of Ricatti equation

$$x'=t^2+x^2,$$

which has no explicit solution. Taking a transformation: $x = -\frac{u'}{u}$, we have

$$\begin{pmatrix} u' \\ v' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ t^2 & 0 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}.$$

This is a type of form: x' = A(t)x. We conclude that we are not able to solve the above particular linear time-varying system. Otherwise, we can solve the Ricatti equation. It shows that we can't expect to solve $\Phi(t)$ for x' = A(t)x in general without restriction. There is no way to find a systematic method to solve $\Phi(t)$.

If $A(t) \equiv A$, we are able to find its fundamental matrix solution $\Phi(t) = e^{At}$, which is an exponential of the matrix A.

The following questions need to solve:

• Definition of e^{A} and Basic Properties;

• Role of e^{At} and its Computation;

2. Basic Properties of e^{A}

Definition 7.1 For a real $n \times n$ matrix A, define

$$e^{A} = I_{n} + A + \frac{A^{2}}{2!} + \dots + \frac{A^{m}}{m!} + \dots = \sum_{k=0}^{\infty} \frac{A^{k}}{k!},$$

where $A^0 = I_n$.

Remark 7.1 Since $||I_n||=1$, $||A^m|| \le ||A||^m$, the series

$$1 + ||A|| + \frac{||A||^2}{2!} + \dots + \frac{||A||^m}{m!} + \dots = e^{||A||}$$

is convergent. Therefore, e^A is well defined.

Remark 7.2 Unlike the exponential of scalar e^{a} , e^{A} will be much complicated.

Proposition 7.1 Let A, B, P be all $n \times n$ matrices. Then

- 1) If AB = BA, then $e^{A+B} = e^A e^B$.
- 2) For any $A \in L(K^n)$, e^A is invertible and $(e^A)^{-1} = e^{-A}$.
- 3) If *P* is invertible, then $e^{P^{-1}AP} = P^{-1}e^{A}P$.

Proof. 1) Since AB = BA, the binomial theorem holds for matrix, that is,

$$(A+B)^{k} = \sum_{j=0}^{k} \frac{k!}{j!(k-j)!} A^{j} B^{k-j}.$$

Then,

$$e^{A+B} = \sum_{k=0}^{\infty} \frac{(A+B)^{k}}{k!} = \sum_{k=0}^{\infty} \frac{1}{k!} \left\{ \sum_{j=0}^{k} \frac{k!}{j!(k-j)!} A^{j} B^{k-j} \right\} = \sum_{k=0}^{\infty} \sum_{j=0}^{k} \frac{A^{j} B^{k-j}}{j!(k-j)!}.$$

Meanwhile,

$$e^{A} = \sum_{k=0}^{\infty} \frac{A^{k}}{k!}; e^{B} = \sum_{j=0}^{\infty} \frac{B^{j}}{j!},$$

we have

$$e^{A}e^{B} = (\sum_{k=0}^{\infty} \frac{A^{k}}{k!}) (\sum_{j=0}^{\infty} \frac{B^{j}}{j!}) \stackrel{\Delta}{=} \sum_{k=0}^{\infty} c_{k} ,$$

where c_k is a Cauchy product as follows.

$$c_{k} = \frac{A^{0}}{0!} \frac{B^{k}}{k!} + \frac{A^{1}}{1!} \frac{B^{k-1}}{(k-1)!} + \dots + \frac{A^{k-1}}{(k-1)!} \frac{B^{1}}{1!} + \frac{A^{k}}{k!} \frac{B^{0}}{0!} = \sum_{j=0}^{k} \frac{A^{j} B^{k-j}}{j!(k-j)!}$$

Therefore, $e^{A+B} = e^A e^B$.

2) Since A and -A are always commutative, putting B = -A in 1) gives $I_n = e^0 = e^{A + (-A)} = e^A e^{-A}$,

which implies that e^{A} is invertible and $(e^{A})^{-1} = e^{-A}$. 3) If *P* is invertible, then

$$e^{PAP^{-1}} = \sum_{k=0}^{\infty} \frac{(PAP^{-1})^k}{k!} = I + \sum_{k=1}^{\infty} \frac{(PAP^{-1})^k}{k!}$$
$$= I_n + P(\sum_{k=1}^{\infty} \frac{A^k}{k!})P^{-1} = P(\sum_{k=0}^{\infty} \frac{A^k}{k!})P^{-1} = P^{-1}e^AP. \quad \Box$$

Remark 7.3 e^{A} enjoys the property of e^{a} when $AB = BA \cdot e^{A}$ invertible is analogous to the fact that $e^{a} \neq 0$.

3. Role of e^{At} and its Computation

By the definition of e^A , we have

$$e^{At} = I_n + At + \frac{A^2 t^2}{2!} + \dots + \frac{A^m t^m}{m!} + \dots, \ t \in \mathbb{R},$$

which is uniformly convergent on any $[-h, h] \subset R$, h > 0.

Theorem 7.1 (Fundamental Theorem of Linear System with Constant Coefficient) e^{At} is a principle matrix solution of x' = Ax.

Proof. Denote $\Phi(t) = e^{At}$. Obviously $\Phi(0) = I_n$. Since e^{At} is uniformly

convergent on any compact interval of R, we have

$$\Phi'(t) = (e^{At})' = A + A^2 t + \frac{A^3 t^2}{2!} + \dots + \frac{A^m t^{m-1}}{(m-1)!} + \dots$$
$$= A(I_n + At + \frac{A^2 t^2}{2!} + \dots + \frac{A^m t^m}{m!} + \dots)$$
$$= Ae^{At} = A\Phi(t).$$

Therefore, e^{At} is a principle matrix solution of x' = Ax. \Box

Remark 7.4 Although e^{At} is well-defined and is a principle matrix solution of x' = Ax, its computation is still nontrivial because e^{At} is the form of infinite series.

Example 7.1 If $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, then $J^2 = -I_2$ and thus by induction $J^{2n} = (-1)^n I_2$

and $J^{2n+1} = (-1)^n J$. We have

$$e^{tJ} = \sum_{j=0}^{\infty} \frac{t^{j}J^{j}}{j!} = \sum_{j=0}^{\infty} \frac{t^{2j}}{(2j)!} J^{2j} + \sum_{j=0}^{\infty} \frac{t^{2j+1}}{(2j+1)!} J^{2j+1}$$

$$= \sum_{j=0}^{\infty} \frac{t^{2j}}{(2j)!} (-1)^{j} I_{2} + \sum_{j=0}^{\infty} \frac{t^{2j+1}}{(2j+1)!} (-1)^{j} J$$

$$= \sum_{j=0}^{\infty} \frac{t^{2j}}{(2j)!} (-1)^{j} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \sum_{j=0}^{\infty} \frac{t^{2j+1}}{(2j+1)!} (-1)^{j} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} \sum_{j=0}^{\infty} \frac{(-1)^{j} t^{2j}}{(2j)!} & \sum_{j=0}^{\infty} \frac{(-1)^{j} t^{2j+1}}{(2j+1)!} \\ -\sum_{j=0}^{\infty} \frac{(-1)^{j} t^{2j+1}}{(2j+1)!} & \sum_{j=0}^{\infty} \frac{(-1)^{j} t^{2j}}{(2j)!} \end{pmatrix} = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}$$

Example 7.2 If $A = \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix}$, $b \neq 0$, then we have

$$e^{At} = e^{bJt} = \begin{pmatrix} \cos(bt) & \sin(bt) \\ -\sin(bt) & \cos(bt) \end{pmatrix}.$$

Example 7.3 If $A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, $b \neq 0$, then $A = aI_2 + bJ$ and we have $e^{At} = e^{aI_2t + bJt} = e^{aI_2t}e^{bJt} = e^{at} \begin{pmatrix} \cos(bt) & \sin(bt) \\ -\sin(bt) & \cos(bt) \end{pmatrix}$.

Example 7.4 If
$$A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$$
, then $A = 2I_2 + Z$, where $Z = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ with $Z^2 = O$.

Since I_2 and Z commute, then

$$e^{At} = e^{(2I_2+Z)t} = e^{2I_2t}e^{Zt} = e^{2t}e^{Zt},$$

where

$$e^{Zt} = I_2 + Zt + \frac{Z^2t^2}{2!} + \dots + \frac{Z^mt^m}{m!} + \dots = I_2 + Zt = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}.$$

Therefore,

$$e^{At} = e^{2t} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}.$$

Remark 7.5 Notice that e^{Zt} is a finite form in Example 7.4, which can be computed. In fact, Z is nilpotent of order 2, i.e. $Z^2 = O$.

Definition 7.2 A $n \times n$ matrix N is said to be **nilpotent** of order k if $N^k = O$ and $N^{k-1} \neq O$.

Definition 7.3 Let λ be an eigenvalue of A. We define

- 1) λ has an **algebraic multiplicity** of l if λ is a zero of order l of $P(\lambda) = \det(A \lambda I)$;
- 2) λ has a **geometric multiplicity** of k if k is the dimension of the subspace spanned by the eigenvectors of A for λ , i.e. the number of the existed linearly independent eigenvectors belongs to λ , denoted by $k = \dim \operatorname{Ker} (A - \lambda I_n)$,

where Ker
$$(A - \lambda I_n) \stackrel{\text{def.}}{=} \{ v \in \mathbb{R}^n \mid (A - \lambda I_n) v = 0 \}$$
 is **the kernel** of $A - \lambda I_n$.

Remark 7.6 Clearly $k \le l$. If k = l, A is diagonal.

Definition 7.4 Let λ be an eigenvalue of A. The **generalized eigenspace** of λ consists of the subspace

$$E_{\lambda} = \{ v \in \mathbb{R}^{n} : (A - \lambda I_{n})^{k} v = 0, \text{ some } k \in \mathbb{N}^{+} \}.$$

The elements of the generalized eigenspace are called **generalized eigenvectors**.

Lemma 7.1 E_{λ} is invariant under A.

Proof. We need to show that $\forall v \in E_{\lambda} \implies Av \in E_{\lambda}$. If $v \in E_{\lambda}$, we have $(A - \lambda I_n)^k v = 0$. Then, $(A - \lambda I_n)^k Av = (A - \lambda I_n)^k Av - \lambda (A - \lambda I_n)^k v = (A - \lambda I_n)^{k+1} v = 0$, and thus $Av \in E_{\lambda}$. \Box

Proposition 7.2 Let A be a $n \times n$ matrix. Then there exists a basis of C^n , which consists of generalized eigenvectors, i.e.

$$C^n = \bigoplus_{\lambda} E_{\lambda}.$$

Remark 7.7 If A is a real matrix, then there exists a basis of R^n , which consists of generalized eigenvectors, i.e.

$$R^n = \bigoplus_{\lambda} E_{\lambda},$$

where λ may be real or complex.

Definition 7.5 The matrix A is said **semi-simple** or **diagonalizable** if for each λ , algebraic and geometric multiplicity coincide, i.e. l = k for each λ .

Theorem 7.2 (Decomposition Theorem) Let A be a $n \times n$ matrix with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ repeated according to their (algebraic) multiplicity. Then, there exists the decomposition

A = S + N ,

where the matrix S is semi-simple, the matrix N is nilpotent of order k no less than the maximum of the algebraic multiplicities of the eigenvalues, and commute with S, i.e. SN = NS.

Proof. Let $\{v_1, v_2, \dots, v_n\}$ be a basis of generalized eigenvectors for C^n by Proposition 7.2. Let $P = (v_1, v_2, \dots, v_n)$ and $\Lambda = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$, where $\lambda_j = \lambda$ if $v_i \in E_{\lambda}$ and P is invertible. Then, we define

$$S = P\Lambda P^{-1}$$
 and $N = A - S$.

This provides the decomposition A = S + N. By construction, S is semi-simple.

Next we show that SN = NS. Since SN - NS = S(A - S) - (A - S)S = SA - AS,

It suffices to show that SA = AS. If $v \in E_{\lambda}$, then $Av \in E_{\lambda}$ and $Sv = Av = \lambda v$.

$$(SA - AS)v = SAv - A\lambda v = (S - \lambda I_n)Av = 0.$$

For $\forall v \in C^n$, v is a sum (linear combination) of generalized eigenvectors, we have

$$(SA - AS)v = 0$$

for any $v \in C^n$. So we obtain SA - AS = O.

Finally we show that N is nilpotent. Choose k to be larger than or equal to the largest algebraic multiplicity of the eigenvalues of A. If $v \in E_{\lambda}$, we have $Sv = \lambda v$.

$$N^{k}v = (A - S)^{k}v = (A - S)^{k-1}(A - \lambda I_{n})v$$
$$= (A - \lambda I_{n})(A - S)^{k-1}v = \dots = (A - \lambda I_{n})^{k}v = 0$$

It is the same to get from $N^k v = 0$ for $v \in E_{\lambda}$ to $N^k v = 0$ for any $v \in C^n$. So

 $N^k = O$. \Box

If A is a real matrix with repeated real eigenvalues, we have the following form of Decomposition Theorem.

Theorem 7.3 (Decomposition Theorem) Let A be a **real** $n \times n$ matrix with **real** eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ repeated according to their (algebraic) multiplicity. Then, there exists the decomposition

$$A = S + N ,$$

where the matrix *S* is semi-simple, i.e. $S = Pdiag(\lambda_j)P^{-1}$; *N* is nilpotent of order *k* no less than the maximum of the algebraic multiplicities of the eigenvalues, and commute with *S*, i.e. SN = NS.

Corollary 7.1 Based on Theorem 7.3, x' = Ax with $x(0) = x_0$ has the solution

$$x(t) = Pdiag(e^{\lambda_{j}t})P^{-1}[I_{n} + Nt + \dots + \frac{N^{k-1}t^{k-1}}{(k-1)!}]x_{0}$$

Proof. According to Decomposition Theorem, the fundamental theorem and 3) in Proposition 7.1, we have

$$x(t) = e^{At} x_0 = e^{(S+N)t} x_0 = e^{St} e^{Nt} x_0 = e^{Pdiag\{\lambda_j\}P^{-1}t} e^{Nt} x_0$$
$$= Pdiag(e^{\lambda_j t})P^{-1}[I_n + Nt + \dots + \frac{N^{k-1}t^{k-1}}{(k-1)!}]x_0. \quad \Box$$

Corollary 7.2 If λ has multiplicity *n* of *A*, then x' = Ax with $x(0) = x_0$ has the solution

$$x(t) = e^{\lambda t} \left[I_n + Nt + \dots + \frac{N^{n-1}t^{n-1}}{(n-1)!} \right] x_0.$$

Proof. Since λ has multiplicity *n* of *A*, Corollary 7.1 gives

$$\begin{aligned} x(t) &= Pdiag(e^{\lambda t})P^{-1}[I_n + Nt + \dots + \frac{N^{n-1}t^{n-1}}{(n-1)!}]x_0 \\ &= Pe^{\lambda t}I_nP^{-1}[I_n + Nt + \dots + \frac{N^{n-1}t^{n-1}}{(n-1)!}]x_0 \\ &= e^{\lambda t}[I_n + Nt + \dots + \frac{N^{n-1}t^{n-1}}{(n-1)!}]x_0. \end{aligned}$$

Since P could be any basis of R^n here, we take P as I_n , the usual basis for R^n . Then $S = diag(\lambda)$ and N = A - S. \Box

Remark 7.8 In case λ has multiplicity *n* of *A*, the solution is particularly easy to be computed without finding a required basis.

Example 7.5 Solve x' = Ax with $x(0) = x_0$, where $A = \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix}$.

Solution. A has $\lambda_1 = \lambda_2 = 2$. Thus, $S = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ and $N = A - S = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$. Since

 $N^2 = O$, therefore,

$$x(t) = e^{At} x_0 = e^{2t} (I_2 + Nt) x_0 = e^{2t} \begin{pmatrix} 1+t & t \\ -t & 1-t \end{pmatrix} x_0.$$

Example 7.6 Solve $x' = Ax$ with $x(0) = x_0$, where $A = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 2 & 0 \\ 1 & 1 & 2 \end{pmatrix}$.

Solution. A has $\lambda_1 = 1$, $\lambda_2 = \lambda_3 = 2$. For $\lambda_1 = 1$, we find an eigenvector

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$$
; For $\lambda = 2$, we only can find an eigenvector $v_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. We need to find

another generalized eigenvector for $\lambda = 2$, independent of v_2 by solving

$$(A-2\lambda)^{2}v = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ -2 & 0 & 0 \end{pmatrix} v = 0,$$

which yields $v_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$. Then, $P = \begin{pmatrix} v_1, v_2, v_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ -2 & 1 & 0 \end{pmatrix}, P^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}.$

Then we compute

$$S = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} P^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 2 & 0 \\ 2 & 0 & 2 \end{pmatrix}; \quad N = A - S = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 1 & 0 \end{pmatrix},$$

and $N^2 = O$. The solution is then given by

$$x(t) = P \begin{pmatrix} e^{t} & 0 & 0 \\ 0 & e^{2t} & 0 \\ 0 & 0 & e^{2t} \end{pmatrix} P^{-1} [I_{3} + Nt] x_{0}$$
$$= \begin{pmatrix} e^{t} & 0 & 0 \\ e^{t} - e^{2t} & e^{2t} & 0 \\ -2e^{t} + (2-t)e^{2t} & te^{2t} & e^{2t} \end{pmatrix} x_{0}.$$

If A is a real matrix with repeated complex eigenvalues, we have the following

form of Decomposition Theorem.

Theorem 7.4 (Decomposition Theorem) Let A be a real $2m \times 2m$ (2m = n)matrix with complex eigenvalues $\lambda_j = \alpha_j + i\beta_j$ and $\overline{\lambda}_j = \alpha_j - i\beta_j$, $j = 1, 2, \dots, m$, repeated according to their (algebraic) multiplicity. Then, there exists a basis of generalized complex eigenvectors $w_j = u_j + iv_j$ and $\overline{w}_j = u_j - iv_j$, $j = 1, 2, \dots, m$ for C^n and $\{u_1, v_1, \dots, u_m, v_m\}$ is a basis for R^n . For any such a basis, $P = (u_1, v_1, \dots, u_m, v_m)$ is invertible and the decomposition

$$A = S + N ,$$

where the matrix *S* is diagonal blocks, i.e. $S = Pdiag\left(\begin{bmatrix} \alpha_j & \beta_j \\ -\beta_j & \alpha_j \end{bmatrix}\right)P^{-1}$; *N* is nilpotent of order *k* no less than the maximum of the algebraic multiplicities of the eigenvalues, and commute with *S*, i.e. SN = NS.

Corollary 7.2 Based on Theorem 7.4, x' = Ax with $x(0) = x_0$ has the solution

$$x(t) = P \operatorname{diag}(e^{\alpha_j t} \begin{bmatrix} \cos \beta_j t & \sin \beta_j t \\ -\sin \beta_j t & \cos \beta_j t \end{bmatrix}) P^{-1} [I_n + Nt + \dots + \frac{N^{k-1} t^{k-1}}{(k-1)!}] x_0.$$

Proof. According to Decomposition Theorem, the fundamental theorem and 3) in Proposition 7.1, we have

$$x(t) = e^{At} x_0 = e^{(S+N)t} x_0 = e^{St} e^{Nt} x_0 = \exp\{P \operatorname{diag}\left(\begin{bmatrix} \alpha_j & \beta_j \\ -\beta_j & \alpha_j \end{bmatrix}\right) P^{-1} t\} e^{Nt} x_0$$
$$= P \operatorname{diag}\left(e^{\alpha_j t} \begin{bmatrix} \cos \beta_j t & \sin \beta_j t \\ -\sin \beta_j t & \cos \beta_j t \end{bmatrix}\right) P^{-1} [I_n + Nt + \dots + \frac{N^{k-1} t^{k-1}}{(k-1)!}] x_0. \quad \Box$$

Example 7.7 Solve
$$x' = Ax$$
 with $x(0) = x_0$, where $A = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 2 & 0 & 1 & 0 \end{pmatrix}$.

Solution. A has $\lambda = i$ and $\overline{\lambda} = -i$ of multiplicity 2. The equation

$$(A - \lambda I_4)w = \begin{pmatrix} -i & -1 & 0 & 0 \\ 1 & -i & 0 & 0 \\ 0 & 0 & -i & -1 \\ 2 & 0 & 1 & -i \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix} = 0$$

is equivalent to $z_1 = z_2 = 0$ and $z_3 = iz_4$. Thus, we have one eigenvector $w_1 = (0, 0, i, 1)^T$. Also the equation

$$(A - \lambda I_4)^2 w = \begin{pmatrix} -2 & 2i & 0 & 0 \\ -2i & -2 & 0 & 0 \\ -2 & 0 & -2 & 2i \\ -4i & -2 & -2i & -2 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix} = 0$$

is equivalent to $z_1 = iz_2$ and $z_3 = iz_4 - z_1$. We therefore choose the generalized eigenvector $w_2 = (i, 1, 0, 1)^T$. Taking real and imaginary part of w_1 and w_2 gives

$$u_1 = (0, 0, 0, 1)^T; v_1 = (0, 0, 1, 0)^T;$$

 $u_2 = (0, 1, 0, 1)^T; v_2 = (1, 0, 0, 0)^T.$

According to Decomposition Theorem, we have

$$P = (u_1, v_1, u_2, v_2) = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}; \quad P^{-1} = \begin{pmatrix} 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix};$$
$$S = Pdiag \left(\begin{bmatrix} \alpha_j & \beta_j \\ -\beta_j & \alpha_j \end{bmatrix} \right) P^{-1}$$
$$= \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & 1 & 0 \end{pmatrix};$$
$$N = A - S = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \text{ with } N^2 = O.$$

Thus, the solution is given by

$$\begin{split} x(t) &= P \begin{pmatrix} \cos t & \sin t & 0 & 0 \\ -\sin t & \cos t & 0 & 0 \\ 0 & 0 & \cos t & \sin t \\ 0 & 0 & -\sin t & \cos t \end{pmatrix} P^{-1} [I_4 + Nt] x_0 \\ &= \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \cos t & \sin t & 0 & 0 \\ -\sin t & \cos t & 0 & 0 \\ 0 & 0 & \cos t & \sin t \\ 0 & 0 & -\sin t & \cos t \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -t & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_0 \\ x_0 \\ t & 0 & 0 & 1 \end{pmatrix} x_0 \\ &= \begin{pmatrix} \cos t & -\sin t & 0 & 0 \\ \sin t & \cos t & 0 & 0 \\ -t \sin t & \sin t - t \cos t & \cos t & -\sin t \\ \sin t + t \cos t & -t \sin t & \sin t & \cos t \end{pmatrix} x_0. \end{split}$$

Remark 7.9 If A has both real and complex repeated eigenvalues, a combination of Theorem 7.3 and Theorem 7.4 can be used. See the following example for how.

Example 7.7 Solve
$$x' = Ax$$
 with $x(0) = x_0$, where $A = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 3 & -2 \\ 0 & 1 & 1 \end{pmatrix}$.

Solution. A has $\lambda_1 = -3$, $\lambda_2 = 2+i$ with $\overline{\lambda}_2 = 2-i$. The corresponding eigenvectors

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}; \quad w_2 = u_2 + i v_2 = \begin{pmatrix} 0 \\ 1 + i \\ 1 \end{pmatrix} \implies u_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \text{ and } v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

Thus,

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}, P^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}; N = O, S = A.$$

The solution is given by

$$x(t) = P \begin{pmatrix} e^{\lambda_{1}t} & 0 & 0 \\ 0 & e^{\alpha_{2}t}\cos\beta_{2}t & e^{\alpha_{2}t}\sin\beta_{2}t \\ 0 & -e^{\alpha_{2}t}\sin\beta_{2}t & e^{\alpha_{2}t}\cos\beta_{2}t \end{pmatrix} P^{-1}x_{0}$$
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} e^{-3t} & 0 & 0 \\ 0 & e^{2t}\cos t & e^{2t}\sin t \\ 0 & -e^{2t}\sin t & e^{2t}\cos t \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix} x_{0}$$

$$= \begin{pmatrix} e^{-3t} & 0 & 0 \\ 0 & e^{2t}(\cos t + \sin t) & -2e^{2t}\sin t \\ 0 & e^{2t}\sin t & e^{2t}(\cos t - \sin t) \end{pmatrix} x_0.$$

Remark 7.10 There are several ways to compute e^{At} , which is a finite form in fact. The decomposition method gives a clear algebra structure property. P is a basis of generalized eigenvectors, S is semi-simple (diagonalizable) and A = S + N, where N is nilpotent, SN = NS. Although the Jordan form method, the Putzer algorithm

and the others can work for computing e^{At} , which are not listed here. They don't have such a nice structure decomposition property.

4. Summary

- e^{At} plays a key role in linear systems with constant coefficient. Its computation is completely solved by Decomposition Theorems.
- For solving x' = Ax + h(t), $x(0) = x_0$, we have the formula

$$x(t) = e^{At}x_0 + \int_0^t e^{A(t-s)} h(s)ds.$$

Homework

Problem 7.1 The "Putzer Algorithm" given below is another method for computing e^{At} when we have multiple eigenvalues:

$$e^{At} = \sum_{j=0}^{n-1} r_{j+1}(t) P_j$$
,

where $P_0 = I_n$, $P_j = (A - \lambda_j I_n)(A - \lambda_{j-1} I_n) \cdots (A - \lambda_1 I_n)$, $j = 1, 2, \dots, n$, and $r_j(t)$,

 $j = 1, 2, \dots, n$, are the solutions of the first-order linear differential equations and initial conditions

$$r'_{1}(t) = \lambda_{1}r_{1}(t)$$
 with $r_{1}(0) = 1$;
 $r'_{2}(t) = \lambda_{2}r_{2}(t) + r_{1}(t)$ with $r_{2}(0) = 0$;
...;

$$r'_{n}(t) = \lambda_{n} r_{n}(t) + r_{n-1}(t)$$
 with $r_{n}(0) = 0$.

- 1) Use the Putzer Algorithm to compute e^{At} for the matrix A given in Example 7.5 and Example 7.6.
- 2) Can you show the Putzer Algorithm? You are encouraged to do it. (Selective) (Hint: $P_n = (A - \lambda_n I_n)(A - \lambda_{n-1} I_n) \cdots (A - \lambda_1 I_n) = O_{n \times n}$)

Problem 7.2 If $J = diag(J_j)$, where J_j is a matrix of order $n_j (> 0)$ and

$$\sum_{j=1}^{r} n_{j} = n, \text{ show that } e^{Jt} = diag(e^{J_{j}t}).$$

Problem 7.3 If $J = \begin{pmatrix} \lambda & 1 & 0 & \ddots & 0 \\ 0 & \lambda & 1 & \ddots & \ddots \\ \ddots & \ddots & \ddots & \ddots & 0 \\ \ddots & \ddots & \ddots & \ddots & 1 \\ 0 & \ddots & \ddots & 0 & \lambda \end{pmatrix}_{m \times m}$, show that
$$\begin{pmatrix} 1 & t & \frac{t^{2}}{2!} & \cdots & \frac{t^{m-1}}{(m-1)!} \\ & & & t^{m-2} \end{pmatrix}$$

$$e^{Jt} = e^{\lambda t} \begin{pmatrix} 1 & t & \frac{t^2}{2!} & \cdots & \frac{t^{m-1}}{(m-1)!} \\ 0 & 1 & t & \cdots & \frac{t^{m-2}}{(m-2)!} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & 0 & 1 & t \\ 0 & \cdots & 0 & 0 & 1 \end{pmatrix}_{m \times m}$$

Problem 7.4 If $J = diag(J_j)$, where

$$J_{j} = \begin{pmatrix} \lambda_{j} & 1 & 0 & \ddots & 0 \\ 0 & \lambda_{j} & 1 & \ddots & \ddots \\ \ddots & \ddots & \ddots & \ddots & 0 \\ \ddots & \ddots & \ddots & \ddots & 1 \\ 0 & \ddots & \ddots & 0 & \lambda_{j} \end{pmatrix}_{n_{j} \times n_{j}}$$

is a Jordan matrix block of order n_j (>0) with $\sum_{j=1}^r n_j = n$, show that

 $e^{Jt} = diag(e^{J_{j}t})$, where

$$e^{J_{j}t} = e^{\lambda_{j}t} \begin{pmatrix} 1 & t & \frac{t^{2}}{2!} & \cdots & \frac{t^{n_{j}-1}}{(n_{j}-1)!} \\ 0 & 1 & t & \cdots & \frac{t^{n_{j}-2}}{(n_{j}-2)!} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & 0 & 1 & t \\ 0 & \cdots & 0 & 0 & 1 \end{pmatrix}_{n_{j} \times n_{j}}$$